
Homomorphic Factorization of BRDFs for
High-Performance Rendering

Michael D. McCool Jason Ang Anis Ahmad

Computer Graphics Lab
Department of Computer Science

University of Waterloo

Figure 1:A model rendered at real-time rates (approximately half the performance of the standard per-vertex lighting model on an NVIDIA
GeForce 3) with several BRDFs approximated using the technique in this paper. From left to right: satin (anisotropic Poulin-Fournier model),
krylon blue, garnet red, cayman, mystique (Cornell measured data), leather, and velvet (CURET measured data).

Abstract

A bidirectional reflectance distribution function (BRDF) describes
how a material reflects light from its surface. To use arbitrary
BRDFs in real-time rendering, a compression technique must be
used to represent BRDFs using the available texture-mapping and
computational capabilities of an accelerated graphics pipeline. We
present a numerical technique, homomorphic factorization, that can
decompose arbitrary BRDFs into products of two or more factors
of lower dimensionality, each factor dependent on a different inter-
polated geometric parameter. Compared to an earlier factorization
technique based on the singular value decomposition, this new tech-
nique generates a factorization with only positive factors (which
makes it more suitable for current graphics hardware accelerators),
provides control over the smoothness of the result, minimizes rel-
ative rather than absolute error, and can deal with scattered, sparse
data without a separate resampling and interpolation algorithm.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture.

Keywords: Hardware accelerated rendering and shading.

1 Introduction

The empirical Phong lighting model currently implemented in
hardware accelerators cannot capture the subtle differences in re-
flectance due to different materials. Fortunately, the computational
capabilities of existing graphics pipelines can be used to evaluate al-
ternative lighting models. We present a texture-based technique for
per-pixel evaluation of physically-based lighting models that can
approximate the reflectance models of a wide range of materials
using only a few texture lookups and multiplications.

Physical surface reflectance can be modelled locally using a bidi-
rectional reflectance distribution function, or BRDF. Letn̂ be the
unit normal at pointx on a surface. For a homogeneous surface,
the outgoing radianceLo from pointx in directionω̂o can be com-
puted using an integral of the incoming radianceLi over all incom-
ing directionsω̂i. The incoming radiance must be weighted by the
positive projected surface area[n̂ · ω̂i] = max(0, n̂ · ω̂i), the BRDF
f , and the solid angle measureσ:

Lo(ω̂o,x) =

∫
Ω

f(ω̂o, ω̂i) Li(ω̂i,x) [ω̂i · n̂] dσ(ω̂i). (1)

While the radiancesLo and Li are parameterized globally, the
BRDFf must be parameterized relative to a local orthonormal sur-
face frame. Such a local surface frame can be generated from the
normaln̂ and an orthonormal reference tangentt̂. The last element
of the local surface frame, a normalized secondary tangent, can be
generated witĥs = n̂× t̂.

When the illumination is fromN point sources, the incoming
radiance can be modelled with a sum of impulses and the above

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

integral reduces to

Lo(ω̂o,x) =

N∑
`=1

f(ω̂o, ω̂
`
i) [ω̂`

i · n̂]
I`

r2
`

, (2)

wherer` is the distance to thèth light source andI` is its intensity.
We will call this thegeneral point source local lighting model.

The parameters to the BRDF,ω̂i andω̂o, have (in general) four
degrees of freedom. For isotropic BRDFs, we can reduce this to
three. To get physically-accurate local lighting for point source il-
lumination, we would like to use the above lighting model with the
BRDFs of real materials. Unfortunately, analytic models are not al-
ways available or practical for BRDFs (often we want to use mea-
sured data), and tabulated 3D or 4D data takes too much space to
be practical for most real-time applications, especially when many
different materials are needed in a scene.

Fortunately, there are several effective BRDF representation and
compression techniques. We focus in this paper primarily on real-
time rendering, and review several representations suitable for such
applications in Section 2.

In this paper a new numerical factorization algorithm and repre-
sentation for BRDFs is introduced. This factored representation
can be used to represent arbitrary BRDFs, including anisotropic
BRDFs. Considered as a compression technique, it achieves high
compression efficiencies (see Section 5), yet permits decompres-
sion (point evaluation) with only a small number of table-lookup
and multiplication operations. It also permits simple antialiasing
on existing hardware, so surfaces rendered with this representation
do not suffer from highlight aliasing. Finally, we can guarantee that
the approximation will satisfy Helmholtz reciprocity, an important
symmetry property that must be satisfied by physical BRDFs.

The rest of the paper is structured as follows: In Section 2 we
review previous work in the representation of local illumination for
high-performance image synthesis. Then we present our factoriza-
tion algorithm in Section 3 and results in Section 4.

2 Previous Work

Practical BRDF representations for real-time rendering currently
fall into three main categories: basis summation, environment map-
ping, and factorization. There is, however, a significant amount of
overlap among these categories, and often they can be used syner-
gistically.

2.1 Basis Summation

Basis summation approaches represent BRDFs using a sum of sim-
pler functions. For instance, a BRDF might be represented using
a sum of Ward [33] or generalized Phong lobes [21]. In general
a large number of lobes might be required to approximate a given
BRDF to sufficient accuracy, but if the basis function can be im-
plemented efficiently, then this technique can be practical. For in-
stance, the Phong lobes provided in the lighting model for exist-
ing graphics pipelines can be used as basis functions [25, 32], and
used either to approximate the BRDF itself or the radiance leaving
a surface [30]. Since in current hardware accelerators the built-in
lighting model is not usually implemented at the per-pixel level,
factorization and environment-mapping based approaches (which
are both texture-based and so are evaluated per-pixel) are usually
more suitable for many applications. Basis representation tech-
niques based on orthonormal expansions [20, 29] are difficult to
implement on many current hardware accelerators due to the lack
of comprehensive support for signed arithmetic. Signed arithmetic
can be simulated on standard graphics systems if necessary, but a
general solution is costly [9].

2.2 Environment Mapping

Environment-mapping based approaches prefilter an environment
map with the BRDF and can have excellent visual quality, but have
to make some assumptions and approximations, which limits their
generality. In particular, environment-map based approaches are
poor at representing the effects of anisotropic BRDFs. Basis func-
tion approaches and environment-map filtering can be combined.
For instance, a BRDF can be approximated with a sum of basis
functions that are each radially symmetric and so suitable for filter-
ing an environment map [18, 19]. Image-based techniques based
on warping have also been used [6]. Environment-map based ap-
proaches can also be combined with factorization approaches in
various ways [14], most simply by using an environment map for
the specular part of the BRDF.

2.3 Factorization

Factorization techniques can deal only with point or directional
sources of illumination. In compensation, they can easily han-
dle anisotropic reflectance models and local viewers. They rep-
resent BRDFs using lower-dimensional functions (factors) that are
multiplied together [10, 14, 17]. For real-time rendering the fac-
tors are generally stored in texture maps and the multiplication
is done using compositing or multitexturing arithmetic. Compu-
tation of the factorization can be done analytically (for specific
BRDFs) or numerically. Factorization can be combined with envi-
ronment mapping, for instance by weighting a (possibly prefiltered)
environment-mapped reflection with shadowing, masking and/or
Fresnel factors [14].

A numerical approach based on the singular-value decomposi-
tion (SVD) builds a series approximation consisting of several two-
factor product terms added together [17]:

f(ω̂o, ω̂i) =

J∑
j=1

uj(πu(ω̂o, ω̂i)) vj(πv(ω̂o, ω̂i)). (3)

Even for difficult BRDFs, given enough terms the SVD approach is
capable of achieving arbitrary fidelity. However, for many BRDFs
the numerical factorization approach is surprisingly effective with
even a small number of terms. If the parameterization of the BRDF
is chosen carefully, even one term with two factors is visually ad-
equate in many cases of interest: metals, cloth, even anisotropic
brushed metal. Unfortunately, as with other expansions relative to
orthonormal bases, the SVD expansion requires signed arithmetic
to be used in its full generality. Second, in order to get good sepa-
rability with the SVD approach, a relatively complicated reparame-
terization of the BRDF is required. Third, before applying the SVD
the BRDF must be reconstructed in four dimensions and resampled
on a dense regular grid, which is often difficult and awkward. Fi-
nally, the SVD approximation minimizes RMS error, which tends
to overemphasize the importance of the fit to the BRDF’s peak, at
the expense of the low-level but visually important base colour.

The algorithm presented here is an improved numerical factor-
ization algorithm for BRDFs. As such, it can be used with arbitrary
BRDFs, including anisotropic BRDFs, but is limited to point (or
directional) sources of illumination.

The new factored representation presented here is in many ways
similar to the SVD representation. However, our new algorithm and
separable BRDF representation addresses the shortcomings of the
SVD approach: most importantly, it avoids negative numbers, and
can use much simpler and more easily computed parameterizations
(in fact, any parameterization). These properties translate directly
into improved performance, while making the technique more flex-
ible and easier to apply in practice.

3 Decomposition Algorithm

We will now present our decomposition algorithm. Section 3.1 and
3.2 explain the use of the logarithmic homomorphism and the ba-
sic structure of the factored representation proposed. Sections 3.3
through 3.5 set up the problem numerically as an overconstrained
linear system, while Section 3.6 discusses issues involved in ro-
bustly solving this system using an iterative technique.

3.1 Logarithmic Transformation

Rather than using a sum as in Equation 3, our approach approxi-
mates a BRDFf using a pure product of an arbitrary number of
positive factors,

f(ω̂o, ω̂i) ≈
J∏

j=1

pj(πj(ω̂o, ω̂i)), (4)

where thepj are two-dimensional functions (ultimately to be stored
in 2D texture maps) andπj : IR4 7→ IR2 are projection func-
tions associated with each map. The (possibly nonlinear) projection
functions define the parameterization of the factors with respect to
the original parameterization of the BRDF.

Taking the logarithm of both sides of Equation 4 (lettingã =
log a) results in the the following linear data-fitting problem:

f̃(ω̂o, ω̂i) ≈
J∑

j=1

p̃j(πj(ω̂o, ω̂i)). (5)

Once we have solved this transformed problem, we can convert
the result back to a solution to the original nonlinear problem
by exponentiating. The logarithmic/exponential homomorphism
log : IR+ ↔ IR simplifies the problem and also ensures that the
result will be positive, even though we solve Equation 5 assuming
signed arithmetic.

Our numerical approach can determine optimal values for an ar-
bitrary number of factors and can obtain arbitrarily precise approx-
imations with appropriately independent projection functions. As
with the SVD, for the best results it is important to pick projection
functionsπj that are compatible with the features and directions of
greatest variation of the functionf .

The mathematics and numerical techniques we will present are
similar to algorithms used in computed axial tomography [3];
specifically, filtered backprojection. Filtered backprojection can
reconstruct a higher-dimensional function to arbitrary precision
given enough independent lower-dimensional projections. How-
ever, rather than reconstructing a function from projections, we find
a set of projections to best reconstruct a given function. We also do
not assume a uniform or dense set of projection functions.

3.1.1 Disadvantages of Approach

There are some potential disadvantages to the logarith-
mic/exponential homomorphic transformation of the problem.

First of all, if f can be zero for any combination of parameters,
then a small bias must be added tof before taking the logarithm.
Otherwise, negative infinities will dominate the data-fitting prob-
lem. We actually use the transformation

f̃ = log
(

f + εA

A

)
, (6)

whereA is the average value of the available BRDF samples (A
will equal the best diffuse approximation if the samples are equidis-
tributed). This transformation also maps values off nearer toA

closer to 0 in log space, which leads to better numerical stability
when fitting sparse data (most fitters send solutions to zero if no
constraints are present). The inverse of this mapping is

f = A exp(f̃)− εA. (7)

In practice, we omit the subtraction to avoid negative values in the
result. Use of the bias termεA formally invalidates the transforma-
tion from Equation 4 to Equation 5, although it still holds approxi-
mately (and well enough in practice) ifε is small. We fixε = 10−5,
so the error due to theεA bias is well below the relative error in
almost all measured data (note that the bias can be interpreted as
an artificial “measurement error” inf). Appropriate modifications
must also be made to account for the scale factorA: each of the
J termsp̃j actually uses the scale factorJ

√
A, while f̃ usesA. To

simplify presentation, we assume in the derivation which follows
that the logarithm is actually used.

Secondly, errors made in the linearized fitting problem, if as-
sumed centered around zero, will have a tendency to bias the ex-
ponentiated solution towards positive values. However, this bias is
consistent in the formal sense that as the accuracy of the approxi-
mation improves (for instance, with approximations using a greater
number of factors), it will tend to zero. On the other hand, the log-
arithmic homomorphism discounts large values in the data, which
prevents it from overfitting peaks, but also tends to bias the approx-
imation downward, and can cause it to misrepresent the specular
color. However, often we will want to separate out the specular peak
anyways (to represent it with an environment map, for instance).

Fortunately, for real-time rendering, if we can control the error
and bias so they are within the numerical precision of the factor rep-
resentations and the reconstruction and display process, they will
be irrelevant. We can also correct for bias problems (on average)
to preserve the energy conservation properties of the BRDF rep-
resentation. The error of an actual approximation is analyzed in
Section 4.3.

Finally, in graphics accelerators that provide only fixed-point
per-pixel arithmetic, we may not have enough precision near zero
to get an accurate reconstruction of the BRDF, or enough dynamic
range. We can rescale the texture maps to make best use of the
available precision and can perform the reconstruction computation
in logarithmic space if needed; see Section 4.1.

3.1.2 Advantage of Approach

The disadvantages of the homomorphic approach to factorization
are offset by a significant advantage: If we solve the linearized
problem described in Equation 5 in logarithmic space by minimiz-
ing RMS error, we will in fact be minimizingrelative RMS error
for the solution to the original nonlinear problem. This is perceptu-
ally desirable, since the eye seems to be roughly sensitive to ratios
of intensity, not absolute intensity [7, 13].

3.2 Parameterization

Despite the potential generality of our approach, in this paper we
will limit ourselves (mostly) to a three-factor approximate BRDF
representation and a very simple parameterization that reuses one
of two texture maps:

ĥ = norm(ω̂o + ω̂i), (8)

f(ω̂o, ω̂i) ≈ p(ω̂o) q(ĥ) p(ω̂i). (9)

This particular parameterization is based on the assumptions that
shadowing, masking, and the microfacet distribution dominate the
variation of reflectance [1], and that shadowing and masking are
independent. Of course other effects contribute to reflectance and

can easily be significant: multiple surface and subsurface scatter-
ing [15, 24], interference [12], the Fresnel effect (dependent on
(ω̂ · ĥ), whereω̂ equalsω̂i or ω̂o), and changes in the apparent
microfacet distribution dependent on masking [5]. Shadowing and
masking effects can also violate the assumption of independence
when ω̂i ≈ ω̂o. However, our numerical technique will use the
available degrees of freedom to fitanyphenomena that are present
as well as possible. For instance, a colour shift caused by multiple
scattering or interference will automatically be approximated with
a function that varies with incident and exitant direction under the
chosen parameterization. It is possible that in the future other pa-
rameterizations and factorizations might be devised to better cap-
ture BRDFs whose dominant variation arises from other mecha-
nisms than we assume, or even that optimized parameterizations
could be found automatically. It would be interesting, for instance,
to explore the use of additional factors dependent on(ω̂i · ω̂o) or
especially(ω̂ ·ĥ). Thed̂ vector from the Kautz-McCool parameter-
ization [17] or normalized affine combinations of any of the other
vectors could also be used.

However, the specific target representation given in Equation 9
has several advantages. The approximation willalways satisfy
Helmholtz reciprocity (trivially, since the representation is symmet-
ric in ω̂o and ω̂i) which is required for physically-based BRDFs.
The representation only requires two texture maps, thus minimiz-
ing storage costs and permitting many BRDFs to be used in a scene
even on low-end systems. Although three factors are required in
total, only two factors depend on the direction of the light source,
which simplifies implementation on systems that permit only two
texture lookups in one pass when multiple light sources are desired.
The parameterization is also easy to compute, significantly more
so than the parameterization in Kautz and McCool [17], yet the
surface-relative parameters are easy to interpolate without singu-
larities. Surfaces dominated by shadowing and masking, as well as
those dominated by microfacet distributions, should both be equally
well-served by this parameterization, and we feel this covers a large
class of interesting materials. Finally, as we discuss in the con-
clusions, this parameterization is potentially useful for generating
random samples of the BRDF for Monte Carlo evaluation of local
lighting in offline rendering.

3.3 Data Constraints

Given samples off , we now need to devise a numerical technique
to findp andq. After transforming both sides of Equation 9 by the
logarithmic homomorphism, we obtain the following:

f̃(ω̂o, ω̂i) ≈ p̃(ω̂o) + q̃(ĥi) + p̃(ω̂i). (10)

Suppose we have a set of data samplesf [k] of a BRDF (with no
particular structure required) and a set of parameter locationsω̂o[k]
and ω̂i[k] for each of those samples. For each data point we can
computêh[k] and then set up a linear constraint equation for it. We
will assume that the functionπj ∈ {πo, πh, πi}will be used to map
directly from(ω̂o, ω̂i) to the corresponding texture map coordinate
(using, for instance, a parabolic map represention of a function over
a hemisphere; see Section 4.1). Letπu

j be theu component of the
projectionπj and letπv

j be thev component.
To find p and q, we will set up a system of linear constraints

relating each samplef [k] to certain texels inp andq, and then solve
the resulting linear system in a minimum-residual sense.

Suppose we have computed the projection of a sample into a
texture map with coordinates(u, v) ∈ IR2. Texels forp̃ andq̃ will
be laid out on a finite-resolution grid and must be interpolated to
get a function overIR2. If we assume texels are located at integers,
we can compute bilinear weighting factors to get subpixel precision

for the location of the projection(uj , vj) = πj(ω̂o, ω̂i):

(Uj , Vj) = (bujc, bvjc) , (11)(
αu

j , αv
j

)
= (uj − Uj , vj − Vj) , (12)(

βu
j , βv

j

)
=

(
1− αu

j , 1− αv
j

)
. (13)

Given the appropriate bilinear weights for the projection of the
sample into the parameter space of each term, and lettingπo, πh,
and πi be the appropriate projections for the individual terms in
Equation 10, a constraint equation for each BRDF sample can be
set up in the following form (the indexk of the BRDF sample and
the parameter vectors has been suppressed for clarity):

f̃ = βu
o βv

o p̃[Uo, Vo]

+ αu
o βv

o p̃[Uo + 1, Vo]

+ αu
o αv

o p̃[Uo + 1, Vo + 1]

+ βu
o αv

o p̃[Uo, Vo + 1]

+ βu
hβv

h q̃[Uh, Vh]

+ αu
hβv

h q̃[Uh + 1, Vh]

+ αu
hαv

h q̃[Uh + 1, Vh + 1]

+ βu
hαv

h q̃[Uh, Vh + 1]

+ βu
i βv

i p̃[Ui, Vi]

+ αu
i βv

i p̃[Ui + 1, Vi]

+ αu
i αv

i p̃[Ui + 1, Vi + 1]

+ βu
i αv

i p̃[Ui, Vi + 1]. (14)

If the two projectionsπi and πo map a BRDF data point to the
same texels in the texture map forp̃, the corresponding coefficients
should be summed.

Bilinear interpolation in log space doesnotcorrespond exactly to
the bilinear interpolation that will be performed later between texels
during hardware rendering. We do it hereonly to obtain subpixel
precision for the projected location of the BRDF sample.

All constraints can be placed in a matrixA, split into the coef-
ficients onp̃ and onq̃, with the texels inp̃ and q̃ unpacked into a
single column vector:[

f̃
]

=
[

Ap Aq

] [
p̃
q̃

]
. (15)

We will write this compactly as

f̃ = Ax̃ (16)

This linear system may be overconstrained or underconstrained. Ei-
ther way, we can solve it in a minimum-residual sense in a number
of ways.

One approach to solving this system in the least squares sense
would be to use a pseudoinverse computed with an SVD [27] (this is
different from using the SVD to compute the factorization directly).
However, computing the pseudoinverse is not practical, since the
matrix is quite large:K × 2M , whereK is the number of samples
of the BRDF we have andM is the number of samples in each
output texture map, which we assume are both the same resolution.

While the matrixA is large, it is also quite sparse. Taking bilin-
ear interpolation into account, there are a maximum of 12 non-zero
values in each row ofA for our target three-factor parameteriza-
tion. We solve Equation 16 using an iterative technique described
in Section 3.6 that only requires the computation of matrix-vector
products. With this approach, we need not even store the matrix
explicitly.

Another issue is that we may not have enough data-fitting equa-
tions to directly constrain all texels. A typical problem would be

gaps in measured BRDF data, since it is hard to measure large inci-
dent and exitant polar elevation angles and certain combinations of
incident and exitant directions (such as direct retroreflection, with
the light and view in the same direction). We might also use a
texture-map parameterization that has texels not projected onto by
any possible combination of incident and exitant directions (in fact
all of the hemispherical texture map parameterizations we use have
this property). In the latter case, we still need to set unused tex-
els to “reasonable” values to avoid problems during interpolation,
particularly if per-vertex normals are used to control shading.

In Section 3.4 we describe a regularization technique that en-
sures that every texel is constrained and which permits control over
the smoothness of the solution. Our regularization technique also
automatically interpolates over gaps in the BRDF data and extrap-
olates out to unused parts of the texture map, finding the smoothest
solution consistent with the data. This both fills in holes and avoids
interpolation problems during rendering.

We conclude this section with a two-dimensional example. Con-
sider the left image in Figure 2. This is a 2D Perlin-noise function
that we wish to approximate with a product of 1D functions. In
this case, we use the three projection functionsπx : (x, y) 7→ x,
πy : (x, y) 7→ y, andπx−y : (x, y) 7→ x− y. Taking the logarithm
of the input image, setting up constraint equations for each input
pixel, solving the resulting linear system in a minimum-residual
sense, and then exponentiating this solution results in the two and
three-factor approximations shown. Note that the two-factor ap-
proximation is set up and solved separately from the three-factor
approximation.

Figure 2: A 2D example. Left to right: input function, separable
approximation with two 1D factors (based on the projections πx

and πy), separable approximation with three 1D factors (based on
the projections πx, πy , and πx−y).

3.4 Smoothness Constraints

Regularization adds additional equations to the system both to make
sure that every texel has an equation that constrains it, and to control
the smoothness of the solution. To accomplish these dual goals, we
will add a constraint that equates the Laplacian of the BRDF recon-
struction everywhere to zero. By weighting these new constraints
by a factorλ, we can control how important smoothness is to the
result. The smoothness constraint also encourages the solution to
interpolate over any gaps in the data without introducing disconti-
nuities at the boundaries of the gap.

Ideally, we would want to apply the smoothing operator tof̃ .
Unfortunately, evaluating a 4D Laplacian operator would be expen-
sive. Instead, we can project the operator down to the texture spaces
and apply it in 2D. The linear projection of a Laplacian operator is
a Laplacian operator, so this is exactly equivalent to applying the
Laplacian operator in the 4D space. In practice, we don’t bother
doing a projection (and ignore the fact that the projection opera-
tors may be nonlinear, and that the projections are not orthogonal
to each other) but just apply the 2D Laplacian masks shown in Fig-
ure 3 to each pixel in the textures̃p and q̃, then set the result to
zero. Let each row ofLp andLq correspond to the application of

2 −1
−1 0

−1 3 −1
0 −1 0

−1 2
0 −1

−1 0
3 −1

−1 0

0 −1 0
−1 4 −1

0 −1 0

0 −1
−1 3

0 −1

−1 0
2 −1

0 −1 0
−1 3 −1

0 −1
−1 2

Figure 3: Masks used to constrain the smoothness of the recon-
struction. The outputs of these masks (position shown in boldface),
multiplied by the smoothness factorλ, are set equal to zero.

the Laplacian operator to every pixel of the corresponding texture,
including those not mapped to by any BRDF sample. Then the aug-
mented system of equations is:[

f̃
0
0

]
=

[
Ap Aq

λLp 0
0 λLq

][
p̃
q̃

]
. (17)

We can write this compactly as

g̃ = Bλx̃ (18)

Note that settingλ = 0 and solving this system using a
minimum-residual solver will solve the original set of equations,
although inefficiently. A largerλ will result in a smoother solution.

3.5 Weighting

If further control over the relative importance of data fitting and
smoothness is desired, individual data constraint equations (i.e.
both the BRDF data point and the coefficients that relate texture
values to it) can be scaled up or down.

Let W = diag(w[k]) be a diagonal matrix of such weights;
then the following system gives independent control of data point
weighting and smoothness:[

Wf̃
0
0

]
=

[
WAp WAq

λLp 0
0 λLq

][
p̃
q̃

]
(19)

We do not consider weighting further in this paper, instead we have
focused on solving the unweighted problem. However, weighting
of data points should be useful if measurement or simulation error
can be estimated for each data point. In that case, weighting each
data point by the reciprocal of its expected variance would be a
good strategy.

3.6 Iterative Solution of Sparse System

To find a factorization it is necessary to solve the sparse, overcon-
strained linear system given in Equation 18. Ideally we want to find
a solution that minimizes the residual error.

Since the matrix is large and sparse, we used an iterative tech-
nique that avoids modifying the matrix and instead depends only on
matrix-vector products. To solve our systems, we used the quasi-
minimal residual (QMR) algorithm [11], a modified version of the
conjugate-gradient algorithm, as implemented in the publically-
available IML++ library from the NIST.

Although it is not necessary, for simplicity we explicitly rep-
resented the sparse matrix using SparseLib++, which comes with
IML++. Since the coefficient matrix depends only on the sampling
geometry and is never modified, a more efficient implementation
would form the required matrix-vector products on the fly. Such an

algorithm would require storage only for the original BRDF data
and the result.

Two other techniques can be used to reduce computation time in
practice: starting with a good initial guess, and solving the prob-
lem at a sequence of increasing scales. Our solver implements both
these techniques. An initial guess can be obtained by using sim-
ple averaging during projection. We also solved the system over a
sequence of increasingly higher resolution grids progressing from
coarse to fine, bilinearly interpolating each stage’s solution up to
get an initial guess for the next finer grid.

4 Results

Section 4.1 discusses some issues that arise in hardware accelerated
rendering implementations. Section 4.2 presents some examples
and Section 4.3 analyses the error in the factored approximation of
some test BRDFs.

4.1 Hardware Accelerated Rendering

Graphics accelerators are basically specialized SIMD/vector com-
puters capable of general (but precision-limited) numerical compu-
tations [8, 23, 31]. To map our representation onto an accelerator,
we need to understand both the computation required and the capa-
bilities of the target. For our target, we will consider the hardware
abstraction presented by standard OpenGL (with multitexturing) as
well as the computational model presented by the NVIDIA regis-
ter combiner extension. Our implementation also uses the NVIDIA
vertex shader extension [22].

To store the factors, texture map representations parameterized
by a direction on the hemisphere are needed that permit good in-
terpolation. We recommend performing the factorization using a
parabolic mapping [16] of the relevant unit vectors. Parabolic maps
work on all hardware accelerators that correctly implement projec-
tive texture coordinate transformation and interpolation, but the re-
sulting 2D images can be resampled into cube maps if the hardware
supports them.

Substituting our BRDF approximation into the general point
source lighting model in Equation 2, we obtain

Lo(ω̂,x) = αp′(ω̂o)

N∑
`=1

q′(ĥ`)p′(ω̂`
i)[ω̂

`
i · n̂]

I`

r2
`

, (20)

wherep′ andq′ are normalized versions of the functionsp andq
andα is a factor to correct for this normalization.

To map this onto standard OpenGL, we can implement the prod-
uct inside the summation with compositing (combining thep′(ω̂`

i)
factor with standard Lambertian lighting on one pass, then multi-
plying byq′(ĥ`) on a following pass), compute the summation over
the light sources using the accumulation buffer, then complete the
final multiplication byαp′(ω̂o) with another rendering and com-
positing pass. In total, such an implementation will require render-
ing the geometry2N +1 times. On standard OpenGL, we will also
have to set up the texture coordinates on the host by computingω̂o,
thenĥ` andω̂`

i for each light source (in model coordinates), then fi-
nally projectingω̂o, ĥ`, andω̂`

i onto the local surface frame defined
at every vertex of each model to be rendered.

Some savings can be made in special circumstances. When both
the viewer and thèth light source are at infinity and fixed,̂ωo,
ω̂`

i , and the half-vector̂h` are global constants. However, it is still
necessary to project these vectors into the local surface frames of
objects that move relative to the viewer and the light source.

On accelerators that support multitexturing with at least two tex-
ture units, we can do the multiplications inside the summation in

Equation 20 in a single pass and accumulate the results in the frame-
buffer using compositing. This is possible, for instance, on the
GeForce 2. A final compositing pass is then needed to multiply by
the common view-dependent factor. Besides requiring onlyN + 1
passes, this approach avoids the use of the accumulation buffer.

In next generation systems that support additional multitexturing
units, we will be able to do several light sources and/or materials in
a single pass, then accumulate multiple passes into the framebuffer
using compositing operations. We can apply the view-dependent
term either at the end or during each pass. If we assume the lat-
ter (which should better preserve precision and is more flexible,
potentially supporting, for instance, per-pixel masking of multiple
materials onto one surface primitive) and assume we have enough
per-pixel shading resources to computeR light sources in a single
pass, we will need onlyN/R passes.

The GeForce 3 permits simple computations to be performed at
every vertex by downloading a program to a vertex shader unit [22,
28]. This capability has been exploited in our implementation to
compute the required texture coordinates fromω̂o, ĥ`, andω̂`

i on
the graphics accelerator, so vertices and normals can be stored in
vertex arrays or display lists and the host can be completely freed
from the need to update texture coordinates. Using the three lookup
factorization above and an extra specular map (four texture lookups
total), the performance of a single-light BRDF-based reflectance
model on a GeForce 3 is just less than half that of rendering the
same model with simple per-vertex diffuse lighting and Gouraud
shading.

Precision and dynamic range are potential problems. On cur-
rent accelerators BRDFs with large dynamic ranges may be hard
to approximate without contouring. This is yet another reason to
clamp the specular peak before factorization and approximate it
separately. However, on future systems supporting full dependent
texturing, we could store the texture maps in logarithmic form and
perform the multiplications using addition in logarithmic space. Af-
ter log f has been reconstructed, it can be exponentiated using an-
other lookup table that can also include a “soft clip”. This will in-
crease accuracy near zero yet will avoid undue clamping of interme-
diate results. Floating point numbers can be considered piecewise-
linear approximations to logarithms [4], so this will work in general
for extending dynamic range and low-end precision on fixed-point
hardware.

4.2 Examples

Figure 4:Texture maps for various BRDFs at 32 × 32 resolution,
as used for hardware-accelerated rendering using the parabolic rep-
resentation. Top to bottom: p′, q′, and the normalization correction
colour α. Materials are given in the same order as Figure 1.

Some examples of texture maps generated using the homomor-
phic factorization algorithm are shown in Figure 4. For these ex-
amples, the specular highlight was removed (by clamping) for very
shiny BRDFs, like cayman and mystique, and the factored represen-
tation used only for the directional diffuse component. The remain-
ing specular reflectance was accounted for using an additional map

dependent on̂h, although an environment map and/or a more com-
plex factorization (including, for instance, a Fresnel term) could
have been used instead.

We have implemented demonstration programs on the NVIDIA
GeForce 2 and GeForce 3. On the GeForce 3, using both local
lights and viewers (but no attenuation), we have obtained rates of
over 5.1Mtris/second using triangle strips stored in vertex arrays.
We could probably improve on this significantly by using compiled
display lists and/or specializations of our vertex shader for direc-
tional lights and viewers. For comparison, when using standard
OpenGL lighting (diffuse only) with our test models we obtain a
rate of 10.6Mtris/second, or 13.3Mtris/second if we use optimized
vertex-shader diffuse lighting. Images generated using the texture
maps in Figure 4 are shown in Figure 1 and Figure 5.

Our approximation is visually compared with a rendering using
an actual BRDF in Figure 5. We used for this error analysis the
analytic Poulin-Fournier anisotropic reflectance model [26], which
does not take multiple scattering into account but which does ac-
count for different effective normal distributions due to shadowing
and masking.

Figure 5:Top: using actual BRDF values at the vertices of a highly
tesselated model rendered with Gouraud shading. Bottom: approx-
imation using the p(ω̂o)q(ĥ)p(ω̂i) factorization.

4.3 Error Analysis

Error measures were computed by subtracting the values of the
original BRDF from the approximation evaluated at the same sam-
ple locations. For our tests, we sampled the original BRDF in such a
way that sample positions were evenly distributed over both incom-
ing and outgoing hemispheres. Results are summarized in Table 1.
We have computed several error metrics, including both absolute,
square, and relative error metrics.

The maximum error can be quite high. We expected this, since
the logarithmic transformation and the smoothing will both tend to
discount the largest peak in the data. As mentioned before, this
technique seems to be best for the directional-diffuse components
of BRDFs; it tends to damp out specular highlights and/or give them
the same color as the base surface.

Compression ratios are also given. These assume that a BRDF
sample takes up the same amount of space as a texel, and that
textures are stored as square images using parabolic maps (which
wastes some space). The base sampling rate given would be re-
quired for rendering from a 4D table. Factors could also be stored

in compressed form if the hardware permits it (for instance, us-
ing JPEG compression). Under the parameterization we tested,
isotropic BRDFs result in radially symmetric texture maps, so more
compression could be obtained if only the radial variation of these
maps were stored (we can also exploit this symmetry during factor-
ization itself).

BRDF: Cyl16a Cyl16 Cyl32
Samples 57,600 57,600 57,600

Resolution 2× 16× 16 2× 16× 16 2× 32× 32
Compression 113:1 113:1 28:1

Avg BRDF 0.3855 0.3855 0.3855
Avg Approx 0.3463 0.3905 0.3818

Bias -0.039 0.0050 -0.0037
Avg Abs Error 0.1089 0.06350 0.06145
Max Abs Error 1.0628 0.9385 0.9168
Avg Rel Error 0.4446 0.2484 0.2334
Max Rel Error 20.91 24.32 24.38

RMS Error 0.1481 0.09105 0.09002
SNR 9.08dB 13.30dB 13.40dB

Table 1: Error analysis for the anisotropic BRDF approximation
shown in 5. Cyl16a is a naı̈ve (averaged projection) approxima-
tion, Cyl16 and Cyl32 are approximations found via homomorphic
factorization.

5 Conclusions

An approximate BRDF representation has been presented that is
suitable for real-time hardware acceleration of per-pixel local illu-
mination of anisotropic materials from a point source. The repre-
sentation of a BRDF can be stored in two 2D moderate-resolution
texture maps or one cube map, and so a scene can contain models
with many different BRDFs. The factorization algorithm has sev-
eral advantages over the singular value decomposition, includingn-
way factorization, automatic gap-filling, direct compatibility with
sparse, scattered BRDF data, minimization of relative rather than
absolute error, support for arbitrary parameterizations, and produc-
tion of purely positive factors.

Some other applications and extensions are possible.
First of all, this representation is potentially useful for Monte-

Carlo importance sampling in offline renderers. When an incoming
direction is fixed, eitherq(ĥ) or p(ω̂) can be used as a probabil-
ity density to efficiently generate outgoing samples in directions in
which the BRDF is large. This can be used to reduce variance even
if the true BRDF is then evaluated to weight the sample relative to
the factored approximation. See Ashikhmin and Shirley for a simi-
lar technique using an analytic model [2]. They also discuss how to
correct the measure for samples generated with respect toq(ĥ).

Secondly, since the technique extends naturally to representa-
tions with more than three factors, it might be possible to find other
projection functions that better capture other reflectance phenom-
ena than shadowing/masking and microfacet distributions. A 1D
“Fresnel” term dependent on(ω̂ · ĥ) would be particularly useful.

Third, it should be noted that if bump-mapping or normal map-
ping is used, or a very fine mesh of polygons with small normal
deviations, we don’t have to worry so much about interpolation be-
tween vertices and can use maps that depend on 1D parameters.
One particularly interesting parameterization for such a purpose
would be

f(ω̂o, ω̂i) ≈ p(ĥ · ω̂, ĥ · n̂) q(ω̂i · n̂, ω̂o · n̂). (21)

Parameterizing a single map witĥωi ·ĥ andω̂o ·ĥ permits correlated
effects between these two parameters to be captured whenω̂i ≈ ω̂o.

This representation would require only two texture maps and two
lookups, both lookups dependent on parameters which are dot prod-
ucts of the normal (looked up previously in a normal map) with vec-
tors that could be interpolated from vertices. Such a computation
should be well within the capabilities of next-generation hardware
supporting dependent texturing. Unfortunately, this parameteriza-
tion is only appropriate for isotropic BRDFs. “Frame mapping”,
using anisotropic BRDFs, could however be accomplished using
the original parameterization along with multiple maps for normals
and tangents at every point on the surface (adding significantly to
the cost, but not entirely unreasonable).

Finally, a host of other shading techniques can be employed,
such as rendering a “reflectance ball” to get an environment map
that can be used in turn for more efficient rendering of complex
geometry with many light sources (assuming an orthographic view
approximation and isotropic BRDFs), using alpha textures to blend
between multiple materials on the same surface (again well within
the capabilities of next-generation hardware, even in a single pass,
even when combined with normal mapping), and use of environ-
ment maps for the specular term.

Acknowledgements

This research was sponsored by research grants from the National
Science and Engineering Research Council of Canada (NSERC)
and the Centre for Information Technology of Ontario (CITO).
We also gratefully acknowledge NVIDIA’s hardware donations and
early access to prototypes of their next-generation systems. Our
original real-time prototype was based on code originally written by
Chris Wynn and Jan Kautz. The anisotropic Poulin-Fournier model
was evaluated using code (bv) written by Szymon Rusinkiewicz.
Measured BRDF datasets identified by “Cornell” were obtained
from the Cornell University Program of Computer Graphics. Mea-
sured BRDF datasets identified by “CURET” were obtained from
the Columbia-Utrecht Reflectance and Texture Database. Code for
the QMR algorithm and the IML++ and SparseLib++ packages
were obtained from the National Institute of Standards and Tech-
nology (NIST) in the United States.

References
[1] M. Ashikhmin, S. Premǒze, and P. Shirley. A Microfacet-Based BRDF Genera-

tor. SIGGRAPH, pp. 65–74, 2000.

[2] M. Ashikhmin and P. Shirley. An anisotropic Phong BRDF model.Journal of
Graphics Tools, 5(2), pp. 25–32, 2000.

[3] H. H. Barrett and W. Swindell.Radiological Imaging: The Theory of Image
Formation, Detection, and Processing. Academic Press, 1981.

[4] J. Blinn. Jim Blinn’s Corner: Floating-Point Tricks.IEEE Computer Graphics
& Applications, 17(4), July–August 1997.

[5] B. Cabral, N. Max, and R. Springmeyer. Bidirectional Reflection Functions From
Surface Bump Maps.SIGGRAPH, pp. 273–281, 1987.

[6] B. Cabral, M. Olano, and P. Nemec. Reflection Space Image Based Rendering.
SIGGRAPH, pp. 165–170, 1999.

[7] Commission Internationale de l’Éclairage.CIE Colorimetry Standard. Technical
report, Central Bureau of the CIE, 1986.

[8] P. Diefenbach.Pipeline Rendering: Interaction and Realism through Hardware-
Based Multi-pass Rendering. PhD thesis, Department of Computer and Informa-
tion Science, 1996.

[9] C. W. Everitt. High-Quality, Hardware-Accelerated Per-Pixel Illumination for
Consumer Class OpenGL Hardware. Master’s thesis, Dept. of Computational
Engineering, Mississippi State University, 2000.

[10] A. Fournier. Separating Reflection Functions for Linear Radiosity.Rendering
Techniques ’95 (Eurographics Workshop on Rendering), pp. 383–392. Springer,
1995.

[11] R. W. Freund and N. M. Nachtigal. A Quasi-Minimal Residual Method for Non-
Hermitian Linear Systems.Numerische Mathematik, 60, pp. 315–339, 1991.

[12] J. Gondek, G. Meyer, and J. Newman. Wavelength Dependent Reflectance Func-
tions. SIGGRAPH, pp. 213–220, 1994.

[13] R. Hall. Illumination and Color in Computer Generated Imagery. Springer-
Verlag, 1989.

[14] W. Heidrich and H.-P. Seidel. Realistic, Hardware-Accelerated Shading and
Lighting. SIGGRAPH, pp. 171–178, 1999.

[15] W. Heidrich, K. Daubert, J. Kautz, and H.-P. Seidel. Illuminating Micro Geom-
etry Based on Precomputed Visibility.SIGGRAPH, pp. 455–464, 2000.

[16] W. Heidrich and H.-P. Seidel. View-Independent Environment Maps.Euro-
graphics/SIGGRAPH Workshop on Graphics Hardware, pp. 39–45, 1998.

[17] J. Kautz and M. D. McCool. Interactive Rendering with Arbitrary BRDFs using
Separable Approximations.Rendering Techniques ’99 (Eurographics Workshop
on Rendering), pp. 281–292, Springer, 1999.

[18] J. Kautz and M. D. McCool. Approximation of Glossy Reflection with Prefiltered
Environment Maps.Graphics Interface, pp. 119-126, 2000.

[19] J. Kautz, P.-P. V́azquez, W. Heidrich, and H.-P. Seidel. A Unified Approach to
Prefiltered Environment Maps.Rendering Techniques ’00 (Eurographics Work-
shop on Rendering), pp. 185–196. Springer, 2000.

[20] J. Koenderink, A. van Doorn, and M. Stavridi. Bidirectional Reflection Distri-
bution Function Expressed in Terms of Surface Scattering Modes.European
Conference on Computer Vision, pp. 28–39, 1996.

[21] E. Lafortune, S.-C. Foo, K. Torrance, and D. Greenberg. Non-Linear Approxi-
mation of Reflectance Functions.SIGGRAPH, pp. 117–126, 1997.

[22] E. Lindholm, M. Kilgard, and H. Moreton. User-Programmable Vertex Engine.
SIGGRAPH, 2001.

[23] M. Peercy, M. Olano, J. Airey, and J. Ungar. Interactive Multi-Pass Pro-
grammable Shading.SIGGRAPH, pp. 425–432, 2000.

[24] M. Pharr and P. Hanrahan. Monte Carlo Evaluation of Non-Linear Scattering
Equations for Subsurface Reflection.SIGGRAPH, pp. 75–84, 2000.

[25] B.-T. Phong. Illumination for Computer Generated Pictures.Communications of
the ACM, 18(6), pp. 311–317, June 1975.

[26] P. Poulin and A. Fournier. A Model for Anisotropic Reflection.SIGGRAPH,
pp. 273–282, 1990.

[27] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.Numerical Recipes in C:
The Art of Scientific Computing (2nd ed.). Cambridge University Press, 1992.

[28] K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A Real-Time Pro-
cedural Shading System for Programmable Graphics Hardware .SIGGRAPH,
2001.

[29] P. Schr̈oder and W. Sweldens. Spherical Wavelets: Efficiently Representing
Functions on the Sphere.SIGGRAPH, pp. 161–172, 1995.

[30] W. Sẗurzlinger and R. Bastos. Interactive Rendering of Globally Illuminated
Glossy Scenes.Rendering Techniques ’97 (Eurographics Workshop on Render-
ing), pp. 93–102. Springer, 1997.

[31] C. Trendall and A. J. Stewart. General Calculations using Graphics Hardware,
with Applications to Interactive Caustics.Rendering Techniques ’00 (Eurograph-
ics Workshop on Rendering), pp. 287–298. Springer, 2000.

[32] B. Walter, G. Alppay, E. LaFortune, S. Fernandez, and D. Greenberg. Fitting
Virtual Lights for Non-diffuse Walkthroughs.SIGGRAPH, pp. 45–48, 1997.

[33] G. Ward. Measuring and Modeling Anisotropic Reflection.SIGGRAPH,
pp. 265–272, 1992.

	Introduction
	Previous Work
	Basis Summation
	Environment Mapping
	Factorization

	Decomposition Algorithm
	Logarithmic Transformation
	Disadvantages of Approach
	Advantage of Approach

	Parameterization
	Data Constraints
	Smoothness Constraints
	Weighting
	Iterative Solution of Sparse System

	Results
	Hardware Accelerated Rendering
	Examples
	Error Analysis

	Conclusions

